Engine: Rotax 912/S

Length: 24 ft 5 in / 7.45 m

Wing Span: 29 ft 7 in / 9.00 m

Wings Folded: 6 ft 11 in / 2.10 m

Wing Area: 145 sq ft / 13.5 m²

Fuel Capacity: 37 US gallons / 140 liters

Range: 900 miles / 1450 km

Cruise Speed: 106 mph / 170 km/h

Payload: 683 lbs / 310 kg

MTOW: 1430 lbs / 650 kg

Empty Weight: 750 lbs / 340 kg

Stall Speed: 46 mph / 74 km/h

Payload: 386 lbs / 175 kg

MTOW: 1091 lbs / 495 kg

Empty Weight: 705 lbs / 320 kg

Stall Speed: 40 mph / 65 km/h

Payload: 683 lbs / 310 kg

MTOW: 1430 lbs / 650 kg

Empty Weight: 750 lbs / 340 kg

Stall Speed: 46 mph / 74 km/h

Payload: 386 lbs / 175 kg

MTOW: 1091 lbs / 495 kg

Empty Weight: 705 lbs / 320 kg

Stall Speed: 40 mph / 65 km/h
PEREGRINE Researcher
by Flaeming Air
PROJECT SKY WOLF
Design and production by CTI

PROJECT NT150
Design and production by CTI

PROJECT HEBDO
Design and production by CTI

TECHNICAL SPECIFICATION:
WINGSPAN - 10.3 m
LENGTH - 6.7 m
HEIGHT - 2.2 m
COCKPIT WIDTH - 1.18 m

PERFORMANCE:
MAX SPEED - >260 km/h
STALL SPEED - 65 km/h
MTOW - 650 kg
ROTAX 912 LS - 100 hp

ELA-LSA airplane
sky wolf
Robodrone Industries

Robodrone Industries s.r.o. is a start-up company based in the South Moravian Innovation Center, Brno, Czech Republic. In collaboration with the Institute of Aerospace Engineering, Faculty of Mechanical Engineering (FME) of the Brno University of Technology, we develop and design Unmanned Aerial Vehicles (UAVs), also known as drones. The company is primarily focused on development and production of large payload UAV platforms, including user-friendly, navigation and communication systems and cloud-based services.

Our Team
Nearly 60 years of combined experience in technology and software development, project management and product design, management of sales and marketing teams across diverse geographic regions and operations management in global high-tech companies.

Robodrone
Robodrone is an Unmanned Aerial Vehicle. It is remotely controlled or flying autonomously by waypoints and flight plans. Robodrones are six- to eight-propeller universal platforms with a 5-100 kg payload capacity. They may operate across a broad range of scenarios, e.g., rescue missions, precision agriculture, monitoring or logistics support. Robodrones play a role whenever the usage of helicopters or airplanes is expensive, dangerous for pilots or technically impossible. Robodrones have long endurance, high payload, minimal manpower requirements and low total cost of ownership.

Unique Platform
Robodrone is a multi-purpose modular aerial platform allowing for flexible, mission-specific configurations. Integrated autonomous flight control systems are combined with ground operations and in the near future will be enhanced with multi-UAV systems interaction. Industry-specific web and analytical services reduce the total operating cost and increase the overall value of the system.

Why Robodrone
Safe Flight Operations.
Robodrones provide situational data to the ground operations and meet the security requirements of civilian flight regulations. They continue safe operation in the event of system degradation or loss of data link.

Low acquisition and operating costs.
Robodrones are affordable and accessible for the civilian market. Lean operation and training requirements, optimized logistics and deployment, reliability, maintenance and support.

More effective than manned aircraft.
Minimal operator requirements. Robodrones are ready for missions in various industries using a broad range of sensors and other equipment.

ich (FME) vs.
ms.
ms. Czech engineering (FME)
3 known platforms.

and
out the
term.
ations and
ystems
reduce the
the
system.

market
ics
allian market.
l logistics

ins and
s for
sensors
LIGHT AMPHIBIOUS PRANDTL PLANE

IDINTOS

PRESENTED AT AERO 2014 FRIEDRICHSHAFEN STAND B4 105

INNOVATIVE VERY LIGHT AMPHIBIAN PROJECT

WWW.IDINTOS.EU
IDINTOS is a research project involving a team of Italian Universities and Companies. It is a very light amphibian, based on a box wing configuration known as PrandtlPlane. The great value of the project development comes from the combination of research and experimental activities. Scaled models of IDINTOS, in fact, have been tested both in the towing tank facilities of CNR-INSEAN in Rome and in the wind tunnel of Politecnico of Milan. The project opens new scenarios in aircraft design. The characteristic feature of this airplane, which makes it different from all the present ones, is its box-wing system. When the PrandtlPlane configuration is applied to large commercial aircraft, the main advantage is a higher aerodynamic efficiency that has obvious effects on fuel consumption and environmental impact. In the case of small aircraft, instead, the greatest benefits can be found in flight safety. In fact, thanks to an intrinsic smooth stall behaviour and the presence of control surfaces on both wings, the PrandtlPlane is able to reduce the probability that a human error could be the cause of accidents and other dangerous situations.
IDINTOS PROJECT

Co-financed by
Regione Toscana

Project leader
DICl | Università di Pisa

Partner:
DESTEC | Università di Pisa
ISIA Firenze
EDI Progetti e Sviluppo
MBVision
Dielectrik
CGS Group
Humanware
Daxo Mobile & RFID
SMART AUTOPILOT
DIGITAL 4-AXIS AUTOPILOT WITH TOUCH GLASS COCKPIT

Flight Envelope Protection for UU/LSA
Automatic Trim System. Intuitive Touch Control

SIMSTAR BRAVO
AUTHENTIC LIGHT SPORT AIRCRAFT FLIGHT SIMULATOR

High Fidelity Dynamic Model
Optimal Visualization Systems. Full Feedback
Simpler, lighter, better rules for General Aviation
Change EASA system

EASA + NAAs + Organisations

Current regulatory framework:

- Airworthiness (EASA/DOA/POA)
- Pilot license (EASA/NAA)
- Flying schools (EASA/NAA)
- Airspace (EASA/NAA/SES)
- OPS (EASA/NAA)
- Maintenance (EASA/NAA/MOA)
- SERA (EASA/NAA)
- and more...

No stability, constant changes since 2003

10/04/2014
Simpler, better rules

Interim: Produce handbook/web-tool compiling all current GA regulations

Publish a specific GA annex after appropriate review, if necessary

10/04/2014 AERO 2014
Minimizing the impact of SMS at level of individuals and small organisations
Impact of the change

Such reform **will impact** other elements of the EASA system:

- International harmonisation/coordination
- Structure and organisation of NAAs and GA stakeholders
- EASA and NAA fees & charges
- Leveraging available GA expertise
- Data and safety analysis
Three-pronged approach tackles all three pillars at once, while allowing resources to be focussed on any areas that require immediate action.

Status of actions will be presented during the GA safety Conference, in October 2014.
To find out more!

Simply go and visit the new GA website:

http://easa.europa.eu/ga